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OUTLINE

The finite-size Ensemble Kalman Filter (EnKF-N) is used on a low order coupled
atmosphere-ocean model. The model has two different time scales of evolution with the
atmosphere being faster than the ocean. The goal is to study coupled data assimilation.
Stability of analysis is done to study model dynamical properties and to choose a set up
as a benchmark. Different observational distribution as well different size of ensemble are
considered with strongly coupled assimilation. We finally compare the strongly and weakly
formulation.
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Figure 1: Model evolution - Normalized time series of the
1st and 22th component of MAOOAM during one year.
The different of time scale between the ocean and the at-
mosphere are visible.

Model description

The model is the Modular
Arbitrary-Order Ocean-
Atmosphere Model (MAOOAM)
developed by Stephane
Vannitsem and collabora-
tors ([2]). The system is
described by the evolu-
tion of the temperatures
and the streamfunctions
of the ocean and the at-
mosphere. These quan-
tities are expanded into
a Fourier basis of vari-
able length. The resulting
model used in the present
study possesses 36 ODEs
of which, 20 dimensions
are assigned to the at-
mosphere and 16 to the
ocean.

Stability Analysis

Figure 2: Signs of the Lyapunov exponents as a function of
the physical parameter d - Signs of Lyapunov exponents
for different values of the physical parameter d. Yellow
for positive, green for null values and blue for negative
values. The red value of d is the reference for the sta-
bility analysis. If we decrease d, there are more positive
Lyapunov exponents, so the system is more chaotic.

We compute the spec-
trum of Lyapunov expo-
nents for different values
of parameters. Figure 2
shows the number of pos-
itive, negative and null
exponents for four differ-
ent values of d the fric-
tion coefficient between
the ocean and the atmo-
sphere. In yellow there
are the positive values, in
green the null values and
in blue the negative val-
ues.

There are the same stud-
ies for 2 other physical
coupling parameters :

•Co which is the net
short-wave radiation
input for the ocean

•λ heat exchange be-
tween the ocean and the
atmosphere

The higher the Lya-
punov exponents are, the more chaotic the system is. To study the spectrum, we compute
the signs, the Kolmogorov entropy and the Kaplan-Yorke dimensions. We deduce that if we
want to be more chaotic, we have to decrease d, increaseCo or decrease λ. Co seems to be the
most influential parameter. Finally we take a specific set of parameters with d = 6∗10−8s−1
with an error doubling time of 2 days and 11 non-negative Lyapunov exponents.

Data Assimilation

In Data Assimilation, the Ensemble Kalman Filter method (EnKF) seeks to mimic the anal-
ysis step of the Kalman filter with an ensemble of limited size to simulate the covariance
matrices. The version we use ( named EnKF-N [1]) does not require multiplicative inflation
meant to counteract sampling errors is used.
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Figure 3: RMSE as a function of time with strongly and weakly formulation with N=15 -
Ocean streamfunction assimilation during one year (X-axis). The standard error is in cyan,
the RMSE and the Spread are under it in both case. The atmosphere observation frequency
is 12 hours and the ocean 1 month. Weakly and Strongly assimilation has different patterns
but the trends seem to be the same.

With the set of parameters, we launch twin experiments with an observation error of 1%
of the climate variance. We compute the Root Mean Square Error (RMSE) and the spread
(SPD) during 1 year. Figure 3 and Figure 4 compare the strongly and the weakly formula-
tion.
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Figure 4: RMSE as a function of the atmo-
spheric observation frequency The analysis
error for weak (red) and strong (blue) cou-
pled data assimilation is displayed vs the ob-
servation frequency in the atmosphere. The
horizontal line (cyan) depicts the observation
error level.

Figure 5: Analysis covariance matrices at t=12
months with ∆tfullobs = 24hours and N=15
(strongly coupled) - The coupled terms does
not seem enough correlated.

Summary

•RMSE and SPD are both under the initial error given to the system and SPD is under
RMSE for an observation frequency.

•The performances are improving for bigger ensemble size N of the ensemble with a good
compromise for N=11 the number of non-negative Lyapunov exponents.

• If we observe only the ocean (resp. only the atmosphere), we loose the control of the
atmosphere (resp. the ocean).

•Covariance matrices have not big values, the ocean and the atmosphere are maybe not
enough correlated as shown in Figure 5.

• strongly formulation seems to be better than weakly formulation in the majority of the
cases.
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